La dégradation des molécules organiques

Aspects fondamentaux du spectre solaire

- Le soleil émet des particules, appelées photons, en très grandes quantités.
 C'est le rayonnement solaire.
- Ces flux de photons qu'on appelle également radiations ou rayons, voyagent dans l'espace à la vitesse de 300 000 km/s (c'est la vitesse de la lumière) et atteignent la surface de la terre à différentes longueurs d'ondes.

Différents types de rayonnements

- Les rayons de longueur d'ondes très courtes (les rayons x, gamma,), extrêmement dangereux ,sont heureusement arrêtés dès les couches supérieures de l'atmosphère.
- Les rayons de longueur d'onde très longues (ondes radio) sont très faibles à la surfaces de terre.

Nous parviennent essentiellement sur terre:

- Les UV (riches en énergie), qui ne sont pas visibles. Ils provoquent la dégradation des liants des peintures et de toute molécule organique. Ils ont également un effet bien connu sur notre épiderme qui est le coup de soleil.
- La région du visible, comprise entre 400 et 800 nm. Elle est captée par l'œil humain et transmise au cerveau qui transforme cette énergie en de multiples sensations : les couleurs.
- Les IR sont parfaitement perçus par notre sens du toucher et traduits en sensation de chaleur. En production intense, ils détruisent la matière organique comme la cuisson des aliments.

Le spectre solaire et ses effets

Micro ondes, ondes radio

INFRAROUGE

Échauffement CHALEUR Cuisson

VISIBLE

Vision LUMIÈRE Éblouissement

ULTRAVIOLET

Rayons X, Bêta, Gamma

AUCUNE SENSATION Coup de soleil,
DOMMAGES Ophtalmie
CELLULAIRES

Cancer, vieillissement, cataracte

Les énergies de liaisons dans un composé organique

Liaison chimique	Energie de liaison (kcal/mol) à 25°C
C=C	145.8
C=C O-H	110.6
C-H	98.7
C-C	83
C-O	87

Rayonnement	Longueur d'onde	Energie (Kcal/mol)
Rayons X	0.1 à 400 Å	2.85 10 ⁶ à 712
UV (moyen- proche)	200 à 400 nm	71.2 à 142.4
Visible (violet-rouge)	400 à 760 nm	71.2 à 37.5
IR (proche)	0.76 à 2.5 nm	37.5 à 11.4
Microondes	0.05 à 100 cm	0.06 à 2.85 10 ⁻⁶
Radio	1 à 1000 m	2.85 10 ⁻⁶ à 2.85 10 ⁻⁹

On constate que se sont principalement les rayons UV, riches en énergie, qui sont responsables, malheureusement, de la dégradation des composés organiques comme les liants et les pigments organiques.

Energie est calculée à partir de la relation de Plank-Einstein

$$E = hU = hc/\lambda$$

- E = énergie
- h = constante de Plank
- U = fréquence du rayonnement
- c = vitesse de la lumière
- $\lambda = longueur d'onde$

En association avec l'oxygène de l'air et l'humidité atmosphérique, les UV vont commencer le travail de la destruction des macromolécules (liants) ou des pigments organiques.

Conséquences:

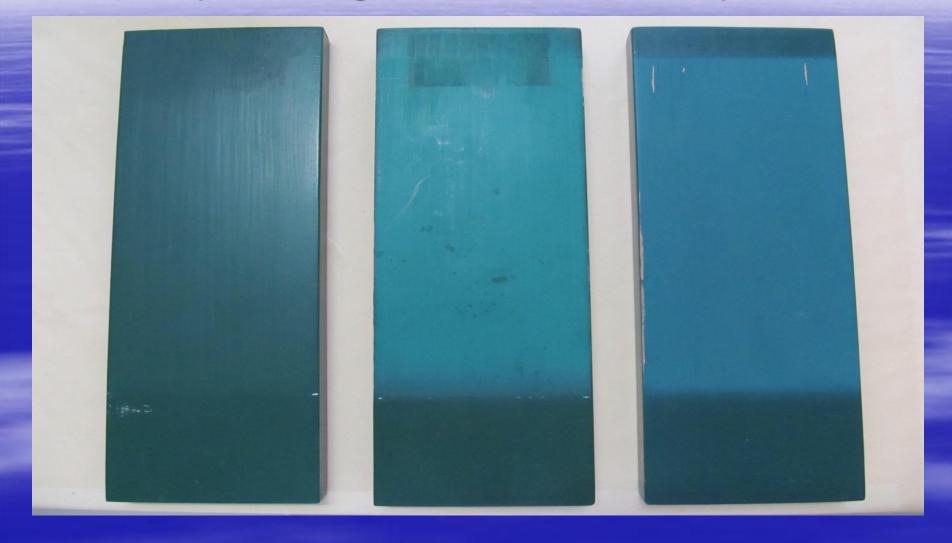
- La dégradation du pigment organique en élément volatil ou partiellement soluble dans l'eau sera délavée et la couleur disparaîtra.
- Le processus du farinage rend les films de plus en plus minces. Chaque fois qu'il pleut, les eaux pluviales lavent les particules pigmentaires. Le film s'érode et perd de l'épaisseur. Le phénomène est d'autant plus prononcé que le liant est peu résistant à l'action destructrice des rayons UV et de l'humidité.
- L'exemple type sont les peintures à l'huile et à peu près tous les liants qui sèchent par oxydation (alkydes).

Durabilité en Europe centrale des peintures brillantes blanches à CPV de 15% en TiO₂

Nature du liant	Poids moléculaire	Erosion en µm/an	Epaisseur en µm
Huiles	10 ³	5-10	125
Alkyde longue	10 ⁴	3	70
Alkyde silicone	10 ⁴	2	70
Polym. Chlorés	10 ⁴ -10 ⁵	3	70
Copol. Styr	5.10 ⁴	3-4	70
Copol. Méthacr.	10 ⁵	2	70
Disp. copol. PVA	10 ⁶	1	80
et PVC			
Disp. de copol. méthacr.	10 ⁶	1	80
PU à 2 comp. Dur. aliphatique	10 ⁴ -10 ⁵	1	70

- Le climat de référence est celui d'Europe centrale, avec environ 1000J/cm²/jour, une humidité relative de 80% et une température moyenne de+10°C (ce qui correspond à peu près au climat de l'Allemagne centrale).
- Les données ont été recueillies dans différentes stations d'exposition d'Europe centrale, pour une inclinaison de 45°, face au sud.
- Une éprouvette inclinée à 45° subit une dégradation deux fois plus rapide que si elle avait été placée verticalement.

Les longueur d'ondes UV les plus agressives pour différents liants


 Remarque: Plus la longueur d'onde est courte, plus elle est riche en énergie, plus son potentiel de dégradation pour les molécules organiques est important.

Huiles et alkydes	280-310 nm
polystyrène	320-340 nm
Chlorure de polyvinyle	310-370 nm
Copolymère PVC-PVAC	325-365 nm
polyacrylates	300-340 nm
Polyéthylène	300 nm
polypropylène	370 nm

Exemple de dégradation d'un film de peinture

Exemple de dégradation d'un film de peinture

